Rotring 300 2mm clutch pencil modification

I am a great fan of the Rotring 300 clutch pencil that takes 2mm lead. Together with Sharpie markers these make good shirt pocket workshop assets. The pencil has one weakness … the useless ‘sharpener’/ lead pusher that always keeps dropping out, rolling under something/ getting lost, all of which render the pencil frustratingly useless.

When this happens my solution is to model and make a replacement pusher albeit without the sharpener facility. I already have a Staedler Mars sharpener (#502) which is a far better sharpener.

The choice of how to make the new pusher is either a very luxurious metal replacement or a cheap and easily replaceable 3D printed one. Both work well and below are the essential dimensions. Note that these are correct for a metal replacement but for a 3D printed one you might need to tweak the 4mm and 5.5mm diameters to suit your printer accuracy (4.25mm and 5.45mm on mine).

The 3D printed version has a natural friction that retains it in place. The metal one is a bit too perfect and needs the open end slightly distorted (crushed) to help retain it.

The pencils, spare leads and the sharpener all available on Amazon.

The final shirt pocket recommendation is the twin tip Sharpie marker. These are really useful for marking out.

Sorry that wasn’t very interesting but someone somewhere might be grateful of not having to waste too much time down on their knees looking for the useless end button.

Links to similar or related post are listed below : –

TPL5110 as a Monostable

After finishing a recent project I had a heap of resistors that had been used as select on test parts and now needed sorting and storing correctly. I found a design on the web for a simple Arduino based autoranging resistance meter. I prototyped the measurement circuitry for this and it worked fine. I wanted the power to the device to be from a battery source and to have this turned on via a push button switch and to auto time the ON period and return to standby.

My immediate thought was to use the ICM7555 CMOS equivalent of the ubiquitus 555 as a monostable but although manufactured in CMOS technology it does have a relatively high standby current. Some web research led me to the Texas Instruments TPL5110 which can be used as a monstable triggered from a push button. The device has an incredibly low standby current of a few uA. To use the TPL5110 as a monostable is quite simple. The EN pin is tied to ground instead of to supply. The resulting section of circuitry is simple and is shown below.

The push button sits across the U$7 (supply rail) and U$8 (trigger) terminals and the ON period of the monostable operation is adjusted by the R22 trimpot. A 10 second ON period needs around 10K. Ignore the use of parallel resistors (R21 and R18) as this was to allow my PCB layout to use either a through hole part or SMD part. The switching FET for the supply is a commonly available P channel part. The particular part chosen (DMG3416) has a very low ON resistance. Note that the TPL5110 cannot be used over 5V.

The result is very legant and simple. The standby current was so low I struggled to measure it.

Note that Adafruit has a ready made module that uses the TPL5110 but this is configured with EN permantly connected to the incoming supply. In this mode the device is intended as a timing reference to turn projects ON and OFF at regular intervals in association with feedback from an associated microcontroller (via the DONE pin). If you look at the Adafruit PCB layout you will see that you will need some delicate hacking to get at the EN pin as this is linked to the incoming supply under the TPL5110.

More will follow on the completed Resistance Meter project which has an OLED display and 3D printed enclosure.

Links to similar or related post are listed below : –

Modifications to a FeelTech FY6900

The FY6900 is a very versatile while relatively low-cost function generator.  It has two independent signal sources each with a plethora of output waveforms and it also provides a frequency counter facility. The version I bought was specified to 60MHz and the cost was sub GBP100. It has a somewhat clunky user interface with a single-entry knob for settings but this can be supplemented with a USB PC graphical interface. While not the most sexy of instruments I have grown to appreciate it as a really useful cost effective addition to my electronics workshop.

While working on a clock related project, I had the feeling that the FY6900 displayed frequency did not necessarily accurately match other sources. As the unit does not have an input for an external frequency standard this made cross checking analysis difficult. Download the PDF below to read my notes on fitting an external reference input socket and also upgrading the 10MHz internal reference.

Links to similar or related post are listed below : –

Further Diesel Heater Update

As mentioned on a previous post, I came across a YouTube video regarding a UK source of an electronic replacement for the mechanical pump for use with my 3kW diesel heater. I ordered one of these and have just installed it.

James Browning does not have a website. You send him an email to the address below and he sends you the details of his product. Note that you need to copy his address into your messaging app as the link below is an image not a URL. This affords him some protection against spam.

Installation of James’ box is straightforward with copious notes and videos to assist. Connections are simple – +12V, 0V and the two old wires originally going to the mechanical pump. You need to route the fuel feed via his box and then before running the heater you need to bleed the air from the pipework. There is a handy little switch in the box to help do this.

There is a knob on the box that alters the fuel mix which you can tweak with altitude. This is relevant if you are touring in a mobile home but not for my installation heating the workshop. The box as delivered has the fuel mix set to sea level operation and as I am at 90m asl I left it untouched.

So what have I noticed ?

First of all the old ticking noise has gone and the burner noise is more even. Major plus.

With the mechanical pump I had to put a metal plate against the wall to stop the soot staining the brickwork. Clearly the burn as it was was not correctly balanced to have caused this. With the new electronic pump all I have is condensation dribbling down the plate (it is freezing cold outside) so the burn is more efficient.

I can now burn our domestic heating oil (kero) as the fuel does not need to have any lubrication content as it did for the mechanical pump. Currently in the UK domestic heating oil is around GBP0.70 per litre and road diesel is GBP1.60 so a direct net saving amortising the cost of James’ unit.

Conclusion therefore : -no ticking, more efficient burn, lower cost fuel leading to an overall fast investment return and ultimately a net saving.

So far I am very pleased with the upgrade to my heater and I wish James every success with his innovation.

Links to similar or related post are listed below : –

Myford Super 7 Large Bore depth stop

I recently had to turn a number of items on my lathe and wanted them to be consistent in length. These were long items, too long to reference with my home made Morse Taper depth stop.

In desperation I raided my Sherline CNC Rotary Table hardware kit for my coaxial tailstock clamp. This is based on the Myford tailstock winding handle but without the handle. It clamps the lathe bore to the CNC table for cutting items needing indexing such as clock wheels. Wheel cutting is quite a demanding application. There is no tolerance for slippage or you will get to the last tooth and have only half half the material that you expected left to cut … and the box of shame looms.

The clamp is quite simple – the main body is an expanding collet, this mates with an expansion cone and a centre threaded rod. The cone angle is 5 degrees. There is a knob to tighten the assembly and squeeze the cone into the body to expand its arms. The body has four slots that two pins on the cone engage with to stop rotation.

Having finished the particular job in hand I put away the Sherline clamp and thought it would be useful to make a second version of the clamping collet dedicated as a lathe depth stop. I was rummaging in my metal stock for material to make this when the light bulb came on …. why not 3D print it? When the clamp is used as a depth stop there is no rotational stress. It just acts as a stationary reference stop that sits down the lathe bore.

I copied the dimensions from the Sherline version and input this into Fusion. I printed the body, the cone and a knob (with an M8 embedded nut). The centre rod is M8 studding which passes through the collet body and then screws into the cone and then protrudes onwards to set the depth in the lathe bore. You would think that there needs to be a nut to lock the studding to the cone but the cone cannot rotate as it has the two locating pins. Providing the studding is stopped from rotation while the knob is tightened, the depth should be set solidly. A lathe depth stock is rarely an accurate setting tool but just a repeatable reference. The accuracy of the final cut is catered for by the tool position set and the various lathe DROs.

Printing this was a lot easier than cutting it from metal. No messing setting cutting angles etc. Here is the Fusion pictorial view and cross section.

After using it a couple of times I ended up putting a spring and two M8 washers between the body and the knob to maintain a slight pressure on the cone. The spring keeps the locating pins engaged in the slots on the body as the assembly is pushed in place down the spindle bore.

I also added a ‘top hat’ on the end of the M8 rod (not shown above) to give a larger surface area for the work piece to bear against. This would also stop wobble of the threaded rod as the spindle rotates.

Attached below is a ZIP file with the body, cone, top hat and knob STL files. You will need some M8 studding, an M8 nut and some short M3 stubs for the anti rotation pins in the cone. If you add the spring then two M8 washers will be needed. All the threads are modelled in the STL files but will need cleaning up post printing. I printed in PLA+ and had the prints set to four perimeters. I superglued the two M3 studs in place. The tops of the studs should not protrude beyond the unexpanded body surface otherwise they will bind on the inside surface of the spindle bore.

Things now went a little bit off piste …. I had forgotten that the end of the lathe spindle has a threaded section that mounts the bearing pressure collar. The exposed thread is normally protected with a plain collar. The thread is M35 x 1.5, something very easy to model and print via Fusion 360. Below is the relevant exposed thread with the protector collar removed.

Another light bulb came on (getting to be competition to Blackpool you might think). Why not make things very much simpler?

I modelled a boss to screw onto the M35 x 1.5 thread with a central core to fit down the spindle bore (26mm) and with a central M8 tapped hole. I also printed another through hole M8 knob, a M8 top hat and a new blind M8 knob. I now had a much more simple depth stop.

Here is the Fusion image of the boss. This would have been tricky to cut as one piece in metal but very simple as a 3D print.

Here is a close up view of the final assembly with the top hat out of shot at the far end of the M8 studding but shown in the second image. The knob on the left grips the end of the studding to allow easy adjustment of the position of the top hat. The inner knob locks the studding in place against the boss. Both knobs have embedded M8 nuts glued in place. (Note the bend on studding is a photographic distortion).

Two solutions for a depth stop. The second option is peculiar to the Myford and the first solution more universally adaptable to other lathes. The following download ZIP file contains the STL files for both versions and there is a second ZIP which has the Fusion 360 model for those wanting to tweak. Either version will make a useful addition to the workshop tooling.

Update : I had comments from some readers that the internal thread on the boss was very tight mating on the spindle thread. Being 3D printed it will depend on the slicer and the 3D printer for its fit. I have tweaked the Fusion 360 model to be more tolerant of this and new STL file is on the link below. See the later post on how to do this.

Links to similar or related post are listed below : –

Verified by ExactMetrics