Kant Clamp and Engineering Drawings in Fusion 360

Bondie Hacks is a YouTube site that I have on my YouTube listing and a recent video featured Quinn building a Kant clamp from a kit.   Needing some lockdown distraction I decided that I would attempt to build a clamp from scratch.   Searching on Google revealed a plethora of drawings and from these I distilled a plan of action.

I created a Fusion 360 assembly for my hybrid version. The clamp was made with 3mm steel side plates and the other fittings from various diameters of silver steel.   From the Fusion drawings I created two CAM programs to profile the side plates and the other fittings were all straightforward lathe work with the exception of the gripping blocks.  I made these in aluminium which I ran freehand on my manual mill.   If the clamp is to be used for welding then it is traditional to make the clamps and the screw from copper.

I opted to fasten the side plates with screws and washers but the pillars could have been peened in place.   This would have made replacement of the gripping jaws difficult however so screws seemed like a better option. 

The result turned out very well and I was pleased that I had made the effort.

Stylised Fusion 360 model of my Kant clamp
Stylised Fusion 360 model of my Kant clamp

I have produced engineering drawings on Fusion previously but all were a bit ad hoc.   Fusion is capable of automating the process of creating drawings for each component but I had never got to grips with it.   Having created the clamp I decided it was a good excuse to dig deeper into the drawing process.

There are various YouTube videos on creating Fusion engineering drawings but the one that helped the most was by Bryce at Autodesk.   The key to the automation process is creating Templates.   This is really worth watching if you are debating moving up a level with the quality of your engineering drawings.

https://www.youtube.com/watch?v=Av7rFL-opVo&ab_channel=AutodeskFusion360

The video goes into detail on how to create a customised set of drawing sheet blanks with customised title blocks.   Having watched this a couple of times the mists began to clear. 

The result of my labours is the complete drawing set for my Kant clamp in the following pdf file.   Feel free to download and build your own.

Kant Clamp Structure Drawing v9

Similar or related subjects : –

Converting a vernier to a height gauge using 3D printed parts.

Maybe not the full shilling but functional

This concept was passed to me from a friend and is based on a design published by Ralph Patterson in 2007.   The idea was to make a mounting block and extension arm in metal to allow a vernier to ‘stand up’ and be used vertically.   My contact sent me the drawings.  I don’t seem able to find any link to this or other files by Mr Patterson.

Entering the design into Fusion 360 did not take very long which indicates how well it was drawn originally by Mr Patterson.   There was one major modification however.   The original design was made from metal but our spin on it was to use 3D printed parts.   The base would therefore not have any really mass to keep it stable.   My friend suggested we added ballast in the form of lead shot into a cavity in the base.   I reduced the height of the base print by 3mm to allow an aluminium plate to be fitted to the bottom and added a honeycomb of holes into the base.   Once printed the honeycomb is filled with lead and the base screwed in place.   Conveniently and by fluke rather than design, the honeycomb holes will hold two slightly squashed 0.22″ air gun pellets.  This makes the base feel somewhat more solid on a surface plate.

The slot in the top of the base that takes the vernier is a tight fit on two of my verniers and the third one won’t fit so care is needed in choosing the right vernier for the job.   That aside it works very well for a quick and dirty measurements.

If anyone would like the STL files then let me know on the blog email or post a comment.

Similar or related subjects : –

Fogbuster update on my Myford Super 7 lathe

Plan B Fogbuster Mounting on the Myford lathe

Of late there has been a long thread running about Fogbuster use on the MEW forum.   This set me thinking.  The forum debate centred on whether mist lubricant or flood coolant was more or less healthy.   For hobbyists the consensus seemed to favour the mist coolant.  This was with the proviso that the jet and coolant mix is carefully balanced.  An interesting point was made about ensuring the air stream was pointing away from the operator to avoid blowback.  If all is good you should not be able to smell the lubricant.   (N.B. I use QualiChem Xtreme Cut 250C at around 8% dilution).

The installation on my Tormach PCNC440 is fine with respect to blowback at the operator.  Both nozzles are on flexible mountings and can be easily directed towards the back of the mill.  (See prior post).

My installation just completed on my Myford Super 7 is not quite so perfect.   I was using a T slot at the back of the saddle as the nozzle mounting.  This meant the nozzle was playing on the back of the workpiece and towards the operator.  Perhaps with hindsight not the most healthy option.   OK so I don’t use lubricant on the lathe that much as most of my work is brass and aluminium so maybe less of a critical issue.   Because of the infrequent use I wanted the Fogbuster to be quickly demountable until the next steel job comes along, hence the T slot idea.

I have a Myford Quick Change Toolpost fitted on the Super 7 which has two tool holder positions at right angles to each other.  It struck me that the Fogbuster could be mounted in the QCTP unused slot.   This would allow the air jet and lubricant to point forwards towards the workpiece.  Normally I would have the empty slot on the far side face so a boring bar can be dropped into place.   By rotating the QCTP through 180 degrees the spare slot would sit nearest the operator and be ideal for the Fogbuster.  

I didn’t really want to dedicate a steel tool holder to the Fogbuster so I created a 3D printed version.   This picked up on the prior mounting holes I had modelled in the flexible clamp.

I needed to make sure my 3D printed profile was a good fit in the QCTP so after fully modelling it I moved the time line in Fusion back to the profile extrude and reduced this from 26mm to 5mm and ran a test print on just a 5mm depth version.   This allowed a quick print to be done which gave me feedback to do some minor edits.   The timeline then was dragged fully forward and a full size print run.   Try doing that as easily and quickly in steel ?

The pseudo toolholder 3D print ran in around 90 minutes and looked and fitted well.   To finish off, I turned up a small clamping button to match the normal clamping and height adjustment screw on the QCTP.

Hey presto a new Fogbuster forward facing mounting ready to go.

Close up of Fogbuster mounting using the Myford QCTP
Fogbuster mounting using the Myford QCTP
Overview of Fogbuster mounting on a Myford QCTP
Overview of Fogbuster mounting on a Myford QCTP

Similar or related subjects : –

Having it and not needing it or Needing it and not having it ?

Changing the Drive Belt on a Cowells ME90 Lathe

One of the posters that Jimmy Diresta sells says “I’d rather have it and not need it than need it and not have it”. The saying is apt and often strikes home.  This is not just in terms of larger workshop assets but also in the small scheme of things like workshop tooling.  You know the time you spent making a jig for a job and thought ‘all that extra time and effort to just make that and what do I do with the tooling now ?’

I think it is a saying that is close to the heart of many hobbyist no matter what the medium you are working in.   It does explain why our workshops are full of ‘stuff’ that we accumulate on the ‘just in case’ basis.  How many screwdrivers do we really need ?  The answer of course is ‘one more’.

I believe there should be a sub clause to Jimmy’s poster – “Needing it and Having it yet not being able to Use It”.

I have a Cowells ME90 mini lathe which is a beautiful piece of engineering and I seem to remember it was my first real mechanical engineering purchase.   For 364 days of the year it sits looking forlorn at the back of the bench asking to be valued, loved and used.   When it is called into use it is indispensable.   Usually.  On a recent once in a blue moon 365th day when it and only it could perform a task for me I found the drive belt to the headstock had perished.  You could almost see the grin on the ME90s face.   Gottcha mate, serves you right for not looking after me.

Thankfully the drive belts are standard sewing machine belts (#MB410) and are readily available both direct from Cowells or numerous sources on the Internet including Amazon.   A replacement was ordered and it arrived quite quickly.

Now to the nub of the problem – how to fit the belt ?   Looking at the headstock it suggested that maybe the whole assembly had to be lifted off and split but the cap head screws for this which went down into the baseplate did not want to budge.   I looked at the spindle and it seemed to have differing diameters that at first glance would not allow it to be removed out of the bearing mounts.

Cowells ME90 headstock assembly
Cowells ME90 headstock assembly for reference while following the belt replacement instructions working left to right

Rather than risk a regretful step I emailed Cowells and very quickly got a support reply from Colin.   For all future intrepid belt changers here are his instructions : –

The only way to fit the belt between the 3 step pulleys is to dismantle the headstock assembly.

Its quite simple really:-

Start at the left hand side of the headstock.

1, Unscrew the knurled gear retaining nut.

2, Pull off the 20 tooth gear ( be careful not to lose the tiny Woodruffe key beneath it).

3, Unscrew the round adjuster nut that butts against the large (64t) gear. -You can use a pair of pliers/grips if you put some emery cloth in their jaws.

4, Slacken the M5 grub screw ( or take it out) in the 64t gear.

5, Pull this gear off. (If it is reluctant to budge then, its probably due to a burr underneath- see below for advice).

6, Slacken the M4 grub screw( or remove) in the little collar that abuts the headstock pulley inside the headstock channel.

7, Slacken (or remove) the grub screw in the central vee of the headstock pulley.

8, Slacken the tension on the two bearing adjuster journals- these are the large cap head screws you see on the top face of the headstock body.

9, It should now be possible for the headstock spindle to eject toward the tailstock.

Clean all parts thoroughly and re-assemble in reverse.


If you have trouble removing the 64t gear then, make sure all grub screws are removed as above. Screw back on the knurled gear retaining nut and with a hide mallet, gently tap the headstock spindle toward the tailstock.

As I said in my thank you reply to Colin, I felt like a hybrid version of ‘stupid boy Pike’ and ‘Rodney you plonker’.   (UK sitcom specific joke).

Enough said ?

Similar or related subjects : –

Adding stepper motors to a Myford VMB manual milling machine

Myford VMB Manual Mill Conversion to Stepper Motor control

After many years of winding the Z axis up and down on my Myford VMB I have finally got around to fitting motor control and it is a joy to use.   I am however suffering from muscle wastage as a result.

stepper motor control of a VMB manual milling machine
A general view of the stepper motor control conversion of a VMB manual milling machine. Only the X and Z axis are completed so far. The control box is on the wall behind the mill and has the Shumatech DRO control panel mounted on the front panel.

I have done a write up for those who might want to also enjoy a less taxing movement of X, Y or Z axis on their manual milling machine.  Click on the link below to download as a pdf.

 Fitting XYZ motor feeds to Myford VMB v4

Similar or related subjects : –