Burgess BK3 Bandsaw Disaster and Repair

Some pieces of workshop equipment generate a sentimental attraction that is hard to break.  One such piece of kit is my Burgess BK3 bandsaw which is ancient but has up to now worked reasonably well for my needs.   I bought it on EBay from an owner in Lancashire and remember a nice day trip to collect it.

It is a very useful machine and gets pressed into use day in and day out.   That is until the other day when the blade came off with a loud twang.  On inspection the drive wheel had lost part of its blade outer retaining flange.   It appeared to be very old brittle plastic and the damage was really to be expected given the vintage of the device.

After head scratching I designed a replacement edging strip in Fusion 360 which I 3D printed and glued in place.   Fingers crossed that will give the machine a reprieve and extend its life.

In the course of looking for possible spares (no chance) I came across a reference to modifications to the BK3 in Model Engineer to improve the blade tracking and speed settings.  (ME Vol 170 Issue 3944 and Vol 172 Issue 3962).  The members of my local model engineering club came up trumps with copies of these articles for me.

The guide modification consisted of replacing the two stud guides with ball bearings.  While the machine was in pieces it seemed like a good idea to implement this modification.  The Fusion 360 3D model is shown below. The blade is sandwiched between the two ball races and these can be slid in and out and then be fixed in place with the cap head screws once the correct location is found to guide the blade.

I drew the replacement guide block assembly in Fusion 360 and milled it on the Tormach CNC from brass.   The 1/2″ bearings came from BearingBoys.

All is now re-assembled and running really smoothly.  The blade prefers to run in straight lines which is a revelation.

Similar or related subjects : –

Clough42 Electronic Leadscrew Project Implementation Notes

I have been avidly watching Clough42 on YouTube.  James comes over as a really nice guy and his presentation of his projects is excellent.

My principle interest is the Electronic Leadscrew modification to lathes.  When installed this removes all the hassle of gearboxes and look up tables to be able to cut both Imperial and Metric screw threads and to set X axis movement feed rates.

The concept is simple but his implementation is second to none.  A rotary encoder is fitted to the spindle to count revolutions of the chuck and a stepper motor (or servo hybrid) controls the rotation of the leadscrew.  The resulting feed speed is derived from look up tables.  The whole installation is controlled by a Texas Instruments LaunchPad C2000 microcontroller development board.

I have documented how I implemented this on my Myford Super 7 Big Bore lathe and the pdf can be downloaded below.   There is also a ZIP file of all the Fusion related models for either CNC or 3D printing.

Electronic Leadscrew on Myford Super 7 Full Write Up

Electronic Leadscrew Fusion 360 Files

Update : –

Painted control panel for Clough42 Electronic Leadscrew
Finally got the Clough42 Electronic Leadscrew control panel box painted and rather pleased with the result.

Similar or related subjects : –

3DConnexions Spacemouse joins the workshop

To date I have used Fusion 360 with just a mouse for screen manipulation.  Over the past few months I seem to have developed Carpal Tunnel Syndrome in my right hand. (But there again it could just be old age taking its toll). This is painful at times but does depend on what activity I am undertaking.  Some days just using a screwdriver can be taxing.  I have begun wearing an elasticated wrist and thumb support which seems to have helped. 

While watching one of my many favourite Youtubers mention was made of the big improvement in 3D image manipulation that can be achieved with a 3D mouse.   There is also some evidence that such a device does ease the strain on the wrist.

It seems there is one major player in the market and that is 3DConnexion.  I went through my previously published decision making process on a potential purchase and my Wireless Spacemouse arrived yesterday.

It is supplied with a soft storage pouch and there is a training course app with it which is straightforward.   You can then play a quiz to see how good your hand / eye coordination is.   Perhaps it is not good to dwell on the results of this ….

Initially it is certainly weird to use but then it seems to click (?) with brain and muscle memory and then becomes a major step forward when using Fusion 360.  You use your left hand on the Spacemouse and the right hand for normal mouse activity.

I like it.  In fact I like it a lot and wonder why I hadn’t latched onto it before now.

Hopefully it will ease the strain on my right wrist and probably pass the burden to my left wrist …. arthritis rules.

Similar or related subjects : –

Tormach MicroArc and Fusion 360 and 4th Axis

Tormach MicroArc 4th Axis Arrives

At last a 4th axis drive for the Tormach PCNC440 ! 

tormach microarc 4th axis

I have waited 4 years for this to be available and did not hesitate to put in my order to Tormach for one of the new MicroArc drives.  Probably the best way to get a good idea of this product is to watch John Saunders’ video.

The MicroArc wasn’t a low cost buy and because 4th axis was not around when my 440 was originally shipped, I needed a fitting upgrade kit as part of the order.   Having placed my order with Tormach it took exactly 7 days for DHL to arrive on my doorstep with the shipment.  Quite amazing considering the difficult times we are experiencing at the moment.

It took me about one hour to fit the new stepper driver and additional wiring.  As ever there were good clear instructions from Tormach.   I switched on the 440, enabled the 4th axis in PathPilot and I could control the A axis from the PathPilot screen.   Very impressed.

I watched John Saunders video on the MicroArc and how to do 4th axis programming in Fusion 360.  I drew up a simple model in Fusion but could not get it to produce working GCode.  I had some comms with John and he gave me some pointers.   The model had a rotational repeat pattern but while I could run a single op code, if I tried to run the rotational pattern the post processor came up with an error message and would not output any code.

I thought at first it was because I was only using a Fusion hobbyist licence and that 4th axis maybe was not possible.   A really helpful dialogue with Shannon McGarry at Fusion cleared up that issue so it must be something else.

After some experimenting I discovered that you have to set the axis of rotation in the post processor dialogue options list.   All then worked fine. 

We are up and running on 4th axis !

Similar or related subjects : –

Replacement Chuck Key for a Cowells ME Lathe

Broken Tooth and No Dentist ?

The Cowells Model Engineer miniature lathe is very popular in home workshops.   It is a well made machine and very accurate to use.

There appears to be one recurring problem with the design and that is the chuck key for the TMC3001 3 jaw chuck often ends up with broken teeth.   To understand this better you need to be aware that the Cowells chuck does not have a standard style chuck key.    It is more like a drill press chuck key as you will see from the image below.  It also has 12 teeth which is unusual compared with drill press chuck keys which usually have 11 teeth. Using too much strength trying to over tighten the chuck rotary mechanism could lead to severe machinist depression.

cowells 3 jaw chuck and chuck key
Cowells 3 jaw chuck and chuck key

I have to admit this is going to be another JSN job that slipped through the net while the sign had been left facing the wall from the last one …. a client wanted to know if I could make a replacement chuck key. 

It seems that these are not readily available as replacement parts.  So another little challenge was beginning to niggle at me. I thought about try to use Fusion  360 to create CAM for my Tormach PCNC440 CNC mill it but it didn’t feel like the right approach.  There had to be an easier way.   

While siting in the sunshine at lunch time (probably not paying attention to what my wife was telling me …. (again) …. ) I wondered if standard wheel cutting techniques could be used.   This would mean a custom made fly cutter which didn’t fill me with joy and suggested a lot of grief.  I then wondered if a standard clock wheel cutter might fit the same profile as the chuck key teeth.

With lunch over I dug out my treasure trove of PP Thornton wheel cutters and compared them with the profile of the chuck key.   The PP Thornton 0.95-7 modulus one looked a good bet as a match.   In its normal life this would be a 7 tooth pinion cutter. 

The idea looked like it might work.  I measured and sketched up the rough dimensions of the chuck key head profile which is shown below.   For ease of making a proof of concept prototype I decided to use aluminium.

First job was to profile the aluminium stock to the outline shape of the chuck key.  This completed I then mounted my Sherline CNC rotary table in the mill table vice and with some jiggery pokery managed to get the vice / table aligned at 14 degrees (90-76) to the X axis movement.   I set the centre line of the pinion cutter with the centre line of the aluminium profile.  I dialled in 12 steps on the Sherline and began cutting back and forth.   

To match the original teeth depth I had to go down to the full depth of what the pinion  cutter profile would allow.  On the prototype I didn’t bother finishing the shank of the key and below are some process images and the final prototype result.

process shots of making a cowells chuck key replacement and resulting piece
Images of the process and final result making a prototype Cowells lathe chuck key replacement.

The prototype worked.  I just have to make a fully finished steel version …… oh and remember to turn the JSN notice back over so I can’t miss seeing it next time an intriguing enquiry comes in.

Update : –  Silver steel ruined my cutter … they are really meant for brass. Looks like it will have to be a CNC method.

Similar or related subjects : –