Tower Clocks and Cooke of York

We live in a small village and the local church has a tall spire with a tower clock movement.  Some while ago my friend Dave and I were invited to have look at the workings of the clock which was quite interesting.   The clock is still hand wound twice per week and it does not have any added technology to maintain the time keeping accuracy.  This was some time ago and I thought nothing more of it.

My local village church and clock
Church clock movement by T Cooke of York in the village church

I am a member of the British Horological Institute (BHI) and attend the local meetings once per month.   Earlier this year the subject for the monthly lecture was the Tower Clocks of Cooke of York.   This was particularly poignant for me having spent my early years growing up in the York area.   To my surprise that evening I discovered that the clock here in the village was a Cooke clock.   For those interested the presenter of the talk, Darlah Thomas together with her husband have produced a book on the Cooke family containing a listing and description of the known Cooke clock installations and indeed the optical devices the company produced.  It is a splendid volume worthy of any coffee table collection.

ISBN 978-0-9573733-3-4
Turret Clocks of T Cooke of York by Steve and Darlah Thomas

So back to the story …. the village clock, a Cooke clock and I was living in its shadow.

At the meeting I met David Pawley who spends his life maintaining tower clock movements throughout the south of England.   You can read his website Tower Time here.  I mentioned where I lived and he asked if I would mind helping him with some maintenance on the village clock here in my village.   He had been waiting for the striking mechanism to wind down so the weights were fully dropped and the time was rife to lubricate and check the strike pulley system.   We spent a pleasant morning doing the necessary work and I enjoyed the experience.

During the activity David asked if I could further help him to remove the dials from another tower clock in the local area.   The tower was on a farm estate and of wooden construction.   The woodwork was in need of repair which necessitated a temporary removal of the dials and motion work.   Dave (my friend) and myself duly turned up on the day to help David Pawley and had yet another interesting time working on and removing the items in question.

What impresses me is that these clocks have run for years and years.   The technology available when they were designed and built was basic yet here are movements that keep to seconds accuracy after all these years.

I would not be offending David Pawley if I say he is not young and I would compliment him by saying that he carries an enormous accumulation of knowledge and skills.  One day his knowledge and skills will pass into history and I do not see a new generation filling that gap.   There are a lot of tower clocks in the UK and I can’t see a new generation coming forward to fill the need for maintenance.

Farm estate tower clock
Clock mechanism

Similar or related subjects : –

    Mill Turning Jig

    After a few distractions the Mill Turning Jigs are complete and I have run a test piece that is representative of a clock pillar.

    Mill Turning Jigs

    The jigs were both designed in Fusion 360.   One consists of a large block with space for three 10mm cross section carbide insert tools and a second block with drill and boring related tools.   I have fitted three ER16 collet chucks to this to allow flexibility of tooling choice.  Both have mountings to fit onto my 25mm hole matrix tooling plate on the Tormach.

    The jig manufacture was relatively straightforward with the exception of needing a new 10mm end mill having extended length (35mm) to bottom out the ER16 collet mounting holes.   I got this from APT and the edges were lethally sharp.

    Design in Fusion 360
    Mill Turning Lathe Tool Holding Block
    Fusion 360 design
    Mill Turning Drill and Boring Jig

    Trial Clock Pillar

    The pillar had simple geometry as below.

    Simple Clock Pillar Trial Cut

    I opted to base this on  the largest pillar I had come across in any design which was formed on a 5/8″ brass rod.   I held the stock in the spindle in a 16mm ER32 collet held in a TTS holder.

    I struggled a bit with the CAM for the trial as the tool geometry of the tools  I recently received from Banggood were not in the standard tool library.   I got some of the settings wrong.  That aside the result of the first run is quite pleasing.

    My feeds and speeds were a bit coarse and I cringed once or twice at the tortured sound of brass under pressure.   I didn’t complete the parting off as I didn’t fancy ducking from a large piece of brass spinning lose at 5000 RPM.

    Mill Turning Setup showing both Jigs in place
    Zoomed view of Trial Cuts

    As ever there was quite a bit of learning while making both the jigs and running the trial pillar test piece.

    Drop me an email if you want more information !

    Similar or related subjects : –

      Mill Turning on the Tormach PCNC440

      I just dared to hit run on my first attempt at Mill Turning.  I need to qualify this in that the first run I was cutting air above the set up.   It looked OK so I put the real material in the spindle and I got a turned part as designed in Fusion 360.   I didn’t part it off and you can see the result below.

      Mill Turning set up for first trial run

      Mill Turning is where you place the material you want to shape (usually a rod of some kind) in the mill spindle instead of a milling tool.   The tools are mounted on the milling table (see above in the vice) and are completely stationary but move via the actions of the table in the X axis and the spindle in Z.   The software is conned into thinking the material is really a milling tool and that the tools are the material.

      It has taken me the best part of a week to work out how to model this in Fusion 360 and I have been helped enormously by watching Jason Hughes on YouTube.  It involves allocating a different Work Coordinate for the location of each tool.

      If I can get this more streamlined and get some better lathe tooling in place to support it, then I will be able to turn clock pillars.   This was the last stumbling block in moving to CNC assisted clockmaking.

      Tonight I am a very happy bunny.  A glass or two of Merlot with dinner perhaps ?

      Update – For a full write up on the process and how I got there go to my mill turning page and download the pdf.

      Similar or related subjects : –

        Sherline Motor Assembly for clock wheel cutting

        After completing the write up on the Sherline CNC Indexer for use on the Myford for clock wheel cutting, I realised that an important part of the process was the cutting mechanism itself.

        I had adapted the Sherline headstock motor and spindle assembly to mount on the Myford vertical slide to act as a secondary cutting source. I use this for cutting clock teeth and for drilling holes ‘off centre’ to the lathe axis for such processes as arbor mounting holes.

        The full write is available as a pdf on the associated page on this site.

        Similar or related subjects : –