Milling vice stop for non grooved vice jaws

Another Job Ticked Off

There are a number of lower cost CNC milling vices (vises) available on the market that do not have jaw geometry with grooves for tooling fixtures and vice stops.   Admittedly their jaws could be machined to add this facility but many of these vices have hardened jaws which presents more of a problem.

My CNC vice came from the UK supplier ARCeurotrade and is from their ARC Versatile SG Iron Milling Vices range.   I have the 100mm wide jaw version and the jaws are  just over 11mm (7/16″) thick.

I have a simple plate that acts as a stop  that is flush with the end of the jaws.  This makes use of existing holes in the vice body but often I need to have a stop internal to the jaw footprint.  Juggling then results with all manner of Heath Robinson solutions.

My design is simple and clamps onto the thickness of the jaws.   

There are two M3 clamping screws and there is enough adjustment on these to allow a parallel to also be gripped should it be needed.

CNC vice stop showing clamping onto the vice jaw and also when used with a parallel
CNC vice stop showing clamping onto the vice jaw and also when used with a parallel

I allowed for two positions for the stop rod and the rod is held with a grub screw in each.   There is a central burr clearance neck on the rod so the grub screw does not damage the surface of the rod and make removal difficult.  Clearly the rod could be simplified to have just a single fixed position.

The rod can have rounded ends or it can have ball bearings glued into a cavity on each end of the rod.   The ball bearings would give a higher resilience to damage.

So nothing really complicated or rocket science with just an hour or so of workshop pleasure.   The size can be adjusted to suit your vice jaws and the material can be whatever is in the junk box.

Here is a link to the 2D drawings that were created in Fusion 360.

CNC vice stop Drawing v3

Similar or related subjects : –

Burgess BK3 replacement lower blade guide

Burgess BK3 Final Modification – Lower Blade Guide

This is the final piece in my Burgess BK3 bandsaw upgrade jigsaw.   Having successfully replaced the top guide with a double bearing assembly my attention turned to the lower guide.  Using the same principle as the upper guide I came up with the following assembly.

Burgess BK3 bandsaw replacement lower guide assembly
Stylised Fusion 360 image of the replacement lower guide assembly on my Burgess BK3 bandsaw

This seems to work well and is straightforward to implement.   The bearings are standard 1/2″ size parts from Bearing Boys.   These need a small brass bush to mount them on the sliding brass blocks.  The blocks need a single M3 washer to space the bearing from the block and the body.

The blade pressure roller is made from silver steel and can be heat treated to improve wear from the blade edge.

The mounting bracket arm picks up on the original M5 mounting screw concept.  The bracket could be milled onto the main body as a CNC operation but the two part assembly works fine and is very rigid in operation.

Here is a set of drawings for my BK3 lower guide assembly

The link below is a complete set of notes and drawings pulled into one ZIP file to cover all the modifications I have done and separately document in my blog and other author’s notes that I have come across.  I hope that helps.

Updated file link to BK3 Modifications v2

Similar or related subjects : –

Fogbuster update prompted by Clough42 and other projects

Fogbusters Everywhere

Apart from working on the Thwaites clock parts, I have also done an upgrade to the mounting of my Fogbuster coolant nozzle installation on my Tormach 440.  This was triggered after viewing and being impressed by Clough42’s idea.   The Fogbuster is a great way to clear swarf and apply coolant.  The Fogbuster is normally supplied with a magnetic mounting arm but James’ modification uses LocLine gooseneck components to provide a much more flexible ‘aiming’ capability.

Something to be aware of – James recommends a download from GrabCAD for the 3D files of the two halves of the nozzle holder.   These had been uploaded by contributor Br BRB.  These were apparently publicly available via GrabCAD.  James slightly modified these and was offering them as a free download from his Thingiverse folder.  He has since had to remove them for download due to commercial issues.   BrBRB has also removed the original files from GrabCAD and is seeking to sell these as finished items.  I was lucky to have downloaded the files before the politics cropped up.  I  still have the downloads.

James also advocates fitting a second identical nozzle to the Fogbuster to avoid coolant and air shadowing.   I contacted Fogbuster in California and a very helpful lady called Rachel organised an upgrade kit to provide a second feed from my existing coolant reservoir. 

Dual Fogbuster coolant nozzles on Tormach PCNC440
Dual Fogbuster coolant nozzles on Tormach PCNC440 using Clough 42 flexible nozzle idea

It turned out Rachel was from Bristol UK so it is a small world and we had a good chat.   I have fitted both nozzles to the Tormach.  With a pressure of around 10 to 15 psi, the reservoir feeds both nozzles very well and is a huge improvement in use. 

As I was facing a shipping charge from the US I figured I might as well top up the package so I have also splashed out on a baby version of the Fogbuster to fit to my Myford lathe.  This uses the same idea but with slightly different mounting that fits into the T Slot on the Myford saddle.   I already had the 3D model of the T Slot strip from the ‘bits tray’ installation.

UPDATE : – I went to a Plan B on the lathe mounting – see later post

Baby Fogbuster mounted on Myford Super 7 saddle
Baby Fogbuster mounted on my Myford Super 7 saddle based on the Clough 42 flexi nozzle idea

Another pair of incremental asset improvements successfully installed.  I suppose I had better get on and make something now. 

Back to ‘the clock’ …

UPDATE 2 : – The 3D printed ball joint kept working lose on both the milling machine fogbuster mouunts.  The more I tightened the screws to grip it tighter, the more the 3D components began to crack and give way.   The solution was to fit brass inserts into the 3D prints.  Problem solved.  Incidentally there is a good review of such inserts on CNC Kitchen.

Similar or related subjects : –

Mach3 alternative GUI

A Refreshing New GUI

It seems that many user of Mach3 CNC control software love the concept but hate how it is presented as a user interface.   I tend to agree as I used to tolerate it on my small CNCEST milling machine.  It is certainly not a patch on Tormach’s PathPilot.

While browsing YouTube I came across Physics Anonymous and enjoyed a rant by them about Mach4 and then the joy of seeing their version of a Mach3 GUI which I have to say was a breath of fresh air improvement.

If you hate your Mach3 GUI then have a look at what they are offering as a free download.   It isn’t totally bug free but an upgrade is promised.

Similar or related subjects : –

Myford Lathe ‘Bits’ Tray

A Rainy Day Job

Browsing this months copy of ‘Model Engineering Workshop‘ I was taken by the idea published in the Readers’ Tips section by Bernard Towers for his ‘Bits and Bobs’ tray for his Myford lathe.   A simple but obvious idea.  Quite often I am machining small parts or need to make drill changes and the related items all get lost in the swarf, tools and detritus that has accumulated in the tool tray.  Either that or I put them somewhere ‘safe’ on top slide and they get knocked off and lost …. we have all been there.

It was another grey and miserable lockdown day outside so the idea looked worthy of an hour or so of rewarding therapy.  The nice part about Bernard’s design was the ability to slide the tray in and out on the top slide front edge with a spring loaded T slot retaining strip.

I had inherited a stock pile of surplus nickel silver flat pack RF screening cans with one or two pieces having pre-etched folding lines that would match the size and shape needed.  Only a fourth side needing to be cut and hand folded.  Conveniently these folding lines were just at the right height for the tray walls so they would not foul the cross slide rotation.   Once all four sides were folded up a fillet of solder was run down each corner to seal it and any sharp edges removed.   Nickel silver is one of my favourite fabrication materials being rust free, strong and easy to solder.

The tray is held in place with a length of T slot material and I created this as a 3D print in PLA.   I included hex profile holes on the lower surface to take M4 Nyloc nuts.   This meant I was inverting the retaining construction as shown by Bernard.  I also used cap head screws to mount the pressure retaining springs.

A lovely and useful time filler project and I am indebted to Bernard for publishing his idea in MEW.

 

Similar or related subjects : –

Verified by ExactMetrics